Analytical dynamics of a kirchhoff elastic rod expressed in quasi - coordinates 彈性桿分析動(dòng)力學(xué)的準(zhǔn)坐標(biāo)表達(dá)
Dimension - reduced semi - analytical dynamic programming approach for solving unit commitment problem 一種求解機(jī)組組合優(yōu)化問(wèn)題的降維半解析動(dòng)態(tài)規(guī)劃方法
Analytical dynamic model for planar adjustable five - bar linkages of alterable length and inertia of linkages 桿長(zhǎng)和慣性參數(shù)可變的平面可調(diào)五桿機(jī)構(gòu)的動(dòng)力學(xué)解析模型
Analytical dynamic model for planar adjustable five - bar linkages , in which link lengths and the inertia parameters of links can be changed , was established based on kinematic analysis , kane dynamic equation and numeric - symbolic approach 基于運(yùn)動(dòng)分析、凱恩動(dòng)力學(xué)方程和數(shù)字符號(hào)方法,首次建立了桿長(zhǎng)和慣性參數(shù)可變的平面可調(diào)五桿機(jī)構(gòu)的動(dòng)力學(xué)解析模型。
Based on the requirements of high precision pointing / targeting of advanced spacecraft , dynamic modeling of spacecraft with flexible appendages bonded with piezoelectric sensors / actuators , attitude control and active vibration suppression theory are studied deeply in this dissertation , which is funded by the research fund for the doctoral program of higher education of china item ? “ large flexible multi - bodies structure spacecraft active vibration control technology ” ( 20050213010 ) . the main contents of this dissertation are as the follows : an approximate analytical dynamic model of a flexible spacecraft with surface bonded piezoelectric sensors and actuators is derived using hamilton ’ s principle with discretization by the assumed mode method . the model is then converted to state - space form for the purpose of control design 本學(xué)位論文結(jié)合高等學(xué)校博士學(xué)科點(diǎn)專(zhuān)項(xiàng)科研基金“撓性多體結(jié)構(gòu)衛(wèi)星主動(dòng)振動(dòng)控制技術(shù)研究” ( 20050213010 )課題,從理論上對(duì)粘貼有壓電智能元件的撓性航天器的建模、姿態(tài)控制和主動(dòng)振動(dòng)控制理論等展開(kāi)了深入的研究,其研究?jī)?nèi)容主要包括以下幾個(gè)方面:利用hamilton原理推導(dǎo)了撓性航天器的動(dòng)力學(xué)模型、壓電元件的作動(dòng)方程及檢測(cè)方程,并采用模態(tài)分析方法,進(jìn)一步將撓性航天器的耦合方程規(guī)范化,使之適應(yīng)于姿態(tài)控制系統(tǒng)的分析和設(shè)計(jì)。
百科解釋
In classical mechanics, analytical dynamics, or more briefly dynamics, is concerned about the relationship between motion of bodies and its causes, namely the forces acting on the bodies and the properties of the bodies (particularly mass and moment of inertia). The foundation of modern day dynamics is Newtonian mechanics and its reformulation as Lagrangian mechanics and Hamiltonian mechanics.